July 16, 2018

Heat Pump Options for Retrofits

An air-to-air system is what North Americans typically think of when they hear the term ‘heat pump’. It is because of the predominance of central air conditioning and forced-air heating that air-to-air is the most common distribution medium in the mature heat pump markets of North America. Water distribution systems (hydronic systems) are predominantly used in Europe, Canada and the northeastern part of the US, coinciding with areas where oil- or gas-fired boilers feeding radiators is a common heating system.

The retrofit market in North America falls back on two types of all-electric heat pumps to replace existing oil or gas fired heating systems: central ducted units for houses with central ducting in place or ductless ‘mini-split’ systems for houses that rely on other distribution methods such as radiators or strip electric. Air-to-air systems extract energy from outside air and transfer the heat to either the inside or the outside of the house, depending on the season. Other types of heat pumps extract energy from water and move it to water or air, and still others extract energy from air and transfer it to water.

Heat pumps are typically all-electric systems, although a Canadian contribution to heat pump technology is the bivalent heat pump. ‘Bivalent’ is a term from biology that relates to pairs. Bivalent heat pumps use a gas or propane fired burner to boost the temperature of the air entering the outdoor coil. This allows these units to operate at lower outdoor temperatures. In this dual mode system, the heat pump is typically paired with a conventional boiler, with the heat pump as the lead heating source but switching over to the boiler or furnace when the demand exceeds the supply from the heat pump in periods of low temperature.

 

Heat pump retrofit options suited to hydronic systems

Add-on, or hybrid, heat pump systems – the retrofit solution to a purpose-built bivalent heat pump -- are employed in situationswhere the existing system is in good condition, but there is need to improve the efficiency of the heating system, or drop the reliance on fossil fuel consumption, or both. Add-on air-to-water heat pumps are being used in the UK and other European markets to supplement existing gas or oil-fired boiler systems with hydronic distribution, though they are still very much a niche product. Air-to-water heat pumps are available in North America.

Heat pumps work at lower water temperatures than existing oil or gas boilers. This makes it tricky to retrofit an existing hydronic distribution system with a typical ‘monovalent’ heat pump, as the existing radiators may not be large enough to provide adequate heat at design temperature conditions. Changing out radiators is more disruption than most property owners are prepared to accept unless they are carrying out a large-scale retrofit or addition.where the existing system is in good condition, but there is need to improve the efficiency of the heating system, or drop the reliance on fossil fuel consumption, or both. Add-on air-to-water heat pumps are being used in the UK and other European markets to supplement existing gas or oil-fired boiler systems with hydronic distribution, though they are still very much a niche product. Air-to-water heat pumps are available in North America.

With a bivalent or hybrid system, the heat pump works in synergy with the existing boiler, leaving the distribution system intact. When designing a hybrid system, the heat pump is sized for 20-60% of the maximum heat load. The peak load is met by the existing gas or oil boiler. Connecting the boiler in parallel to the heat pump allows for a lower capacity heat pump, reducing the investment cost, and covering the heating load during the milder shoulder seasons, when the COP of the heat pump is at its highest.

 

How the COP of a water-to-water heat pump varies with the distribution/return temperature

 

Conventional radiators (60-90°C) COP 2.5

Modern radiators (45-55°C) COP 3.5

Floor heating (30-45°C) COP 4

Because it is installed to cover only a part of the heating season, the heat pump in a bivalent or hybrid system is sized to 40 to 60 percent of the heating capacity at the heating design temperature. As the outdoor design temperature occurs for less than 1 percent of the heating season, and the typical outdoor temperature throughout the heating season is much higher, the heat pump can provide the lion’s share of the annual heat load. In fact, in the UK, regulations for this type of system require that the system be sized so that the non-renewable supplementary heating source supplies less than five percent of annual energy requirement (to geek out further on the technical aspects, check out BS EN15450:2007 Heating Systems in Buildings – Design of Heat Pump Heating Systems).

A heat pump operates most effectively when the temperature difference between the heat source and heat sink (distribution system) is small, so the heat distribution temperature for space heating heat pumps should be kept as low as possible during the heating season.

Where radiators are concerned, higher operating temperatures can lower the effectiveness of the heat pump. When serving a high-temperature distribution system originally supplied by a boiler, a heat pump provides supply temperatures that will be only half that from the boiler. However, many older radiator systems are oversized, helping to balance out the drop in supply temperature, especially in the shoulder seasons. 

For renovation and addition projects, where new and old distribution systems could be combined, a bivalent or hybrid system can supply both radiators and infloor heating, with the supply water temperature set at a level suitable for the radiators. A mixing circuit or stepdown valve would need to be added to the system design to reduce the water temperature in the floor heating loops.

In-floor, low-temp hydronic heating (or a fan coil) is the best choice for retrofit projects that include changing out the distribution system, because of temperature match between supply and demand.

Bivalent Controls

There are two ways of controlling bivalent systems. This is where a careful analysis of the building envelope and existing heating system performance is key to improving comfort level and decreasing energy consumption. Designing the controls for the system is important to optimize the energy savings. The first is where the system chooses which heat source to used based on which is the most cost effective. The second is where the system switches from heat pump at low ambient temperatures.

Cost-effective control: A flow temperature of X degrees is required. The heat pump supplies this flow temperature until the ambient temperature drops below the level where the heat pump cost effective. At this point, the system switches to the boiler. The distribution points (radiators or infloor loops) must match the flow temperature, and the heat pump has to be sized to the heating demand at the cut off point.system is important to optimize the energy savings. The first is where the system chooses which heat source to used based on which is the most cost effective. The second is where the system switches from heat pump at low ambient temperatures.

Ambient temperature control: A flow temperature of X degrees is required. When the ambient temperature goes down far enough, and a flow temperature higher than X degrees is required to maintain comfort levels, the system switches to the boiler to increase the flow temperature. This works when the distribution points (radiators or infloor loops) are too small to provide enough heat at flow temperature X and lower ambient temperatures.

Bivalent systems can also produce hot water for domestic use. Advancements in heat pump technology (particularly CO2 based systems) have led to systems that can successfully provide domestic hot water at 60°C.

Tell us what you think

1.902.821.3090

Schedule Service

Tell us what you think

What our customers are saying

  • If you are planning a house build or renovation, understanding Building Science is important to avoid repetitive heating costs and possible water damage later. Shawna and her team know their stuff.

    K.W., General Manager, Halifax, NS
  • Studies over the last 20 years have shown a worrying energy performance gap – where buildings are consistently found to use more heating energy than designers had predicted and Energy Performance Certificates indicate.

    Oliver Drerup, Former Head of Canada Mortgage and Housing Corporation - International
  • I am pleased to hear that you will be undertaking a new initiative to further trades training in residential energy efficiency. CMHC supports the building of industry awareness and capacity to deliver more sustainable technologies and practices in the housing sector.

    Duncan Hill, P. Eng., Acting Director, Sustainable Housing and Communities Policy and Research Policy, Research and Planning, Canada Mortgage and Housing Corporation
  • Over the last 20+ years I have been speaking to and training thousands of new home builders and renovators across North America.

    Gord Cooke, Air Solutions
  • All I can say is … wow!  You have nailed it! I just watched the 5 minute overview of what all your training videos will attempt to accomplish, and am very impressed.  I am so proud that I know you both, this is incredibly good.

    Gregory A. Pedrick, C.E.M., Project Manager, New York State Energy Efficiency Agency
  • This training is easy use and in a perfect format.

    Dan Drummond, Training Director, Canada Wood China
  • It is very well centred on the learner's experience. Visually-based rather than text-based delivery make the modules straightforward and non-intimidating. I like the way the expected learning outcomes are clearly presented and the information is clearly applicable to practical work.

    Michelle Harding, Professional Builders Institute of BC
  • This is primo education that goes way beyond training.

    Chris Rosemont, BASF